
Smart Pointers in C++

Jonas R. Glesaaen
glesaaen@th.physik.uni-frankfurt.de

September 24th 2014

Literature
[1] Boost c++ library.

http://www.boost.org.

[2] C++ reference.
http://cppreference.com.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education, 1994.

[4] S. Meyers.
More Effective C++: 35 New Ways to Improve Your Programs and
Designs.
Pearson Education, 1995.

[5] S. Meyers.
Effective C++: 55 Specific Ways to Improve Your Programs and Designs.
Pearson Education, 2005.

[6] H. Sutter.
Gotw #89 solution: Smart pointers.
http://herbsutter.com/2013/05/29/gotw-89-solution-smart-pointers/.

http://www.boost.org
http://cppreference.com

What are smart pointers?

Objects designed to act like pointers, but provide extended
functionality. Example of the proxy pattern [3].

MyClass * ptr = new MyClass ();
ptr -> Function ();
delete ptr;

Standard pointer use example:

Smart pointers can manipulate three aspects of pointer behaviour:

Construction
Dereferencing
Destruction

Why use smart pointers?
Primarily to avoid memory leaks, which can come from a myriad of
different sources;

MyClass * ptr = new MyClass ();
// ... (1)
ptr -> Function (); // (2)
// ...
delete ptr; // (3)

Memory leak sources

1 Might have multiple return paths
2 Might throw an exception
3 One might simply forget to free the resource

Solution: Wrap the resource in a class which frees it on
destruction.

Why use smart pointers?
Primarily to avoid memory leaks, which can come from a myriad of
different sources;

MyClass * ptr = new MyClass ();
// ... (1)
ptr -> Function (); // (2)
// ...
delete ptr; // (3)

Memory leak sources

1 Might have multiple return paths
2 Might throw an exception
3 One might simply forget to free the resource

Solution: Wrap the resource in a class which frees it on
destruction.

Types of smart pointers

Smart pointers where one object singularly owns a resource

Smart pointers where the resource is shared by multiple objects.

Shared smart pointers utilising the copy-on-write technique.

Smart pointer implementations

All following smart pointers do “garbage collection”, but they differ
in how they are assigned:

SmartPtr <MyClass > p(new MyClass ());
SmartPtr <MyClass > q = p;

Assignment

What happens here?

std boost Qt
std::unique_ptr

std::shared_ptr boost::shared_ptr QSharedPointer

std::weak_ptr boost::weak_ptr QWeakPointer

std::auto_ptr boost::scoped_ptr QScopedPointer

Example: std::unique_ptr
MyClass * CreateObject ()
{

std :: unique_ptr <MyClass > new_object (new MyClass ());

// ...

return new_object . release ();
};

int main ()
{

std :: unique_ptr <MyClass > p1(CreateObject ());
std :: unique_ptr <MyClass > p2 = CreateObject ();

// ...

std :: unique_ptr <MyClass > q1 = p1;
std :: unique_ptr <MyClass > q2 = std :: move(p1);

// ...

q1. reset (new MyClass ());
}

Compilation error!

OK!
Compilation error!

Release ownership of resource
and sets own pointer to
nullptr

Deletes previously owned resource
and takes ownership of the new one.

Example: std::shared_ptr and std::weak_ptr

std :: shared_ptr <MyClass > p1(new MyClass ());

std :: shared_ptr <MyClass > p2 = p1;

{
std :: shared_ptr <MyClass > p3 = p2;

std :: weak_ptr <MyClass > wp = p2;

if(auto p = wp.lock ()) {
// ...

}
}

// ...

use count: 1

use count: 2

use count: 3

use count: 3

use count: 4

use count: 2

Example: std::shared_ptr and std::weak_ptr

std :: shared_ptr <MyClass > p1(new MyClass ());

std :: shared_ptr <MyClass > p2 = p1;

{
std :: shared_ptr <MyClass > p3 = p2;

std :: weak_ptr <MyClass > wp = p2;

if(auto p = wp.lock ()) {
// ...

}
}

// ...

use count: 1

use count: 2

use count: 3

use count: 3

use count: 4

use count: 2

Example: std::shared_ptr and std::weak_ptr

std :: weak_ptr <MyClass > wp;

{
std :: shared_ptr <MyClass > sp =

std :: make_shared <MyClass >();

wp = sp;

if(auto wsp = wp.lock ()) {
// ...

}

// ...
}

if(wp. expired ()) {
// Managed resource has been deleted

}

Choosing the right smart pointer

std::unique_ptr symbolises owning a resource.

Drawing

shapes

Shape

The resource can be shared through references or raw pointers

Choosing the right smart pointer

std::unique_ptr symbolises owning a resource.

Drawing

shapes

std::unique_ptr

shape_ptr

Shape

The resource can be shared through references or raw pointers

Choosing the right smart pointer
std::shared_ptr on the other hand symbolises sharing a
resource with other objects.

Drawing

shapes

std::unique_ptr

shape_ptr

Shape

brush
Brush

The resource can still be shared through pointers and references,
but also using the std::shared_ptr copy constructor and copy
assignment operator.

Choosing the right smart pointer
std::shared_ptr on the other hand symbolises sharing a
resource with other objects.

Drawing

shapes

std::unique_ptr

shape_ptr

Shape

brush

std::shared_ptr

brush_ptr

Brush

The resource can still be shared through pointers and references,
but also using the std::shared_ptr copy constructor and copy
assignment operator.

Choosing the right smart pointer
std::shared_ptr on the other hand symbolises sharing a
resource with other objects.

Drawing

shapes

std::unique_ptr

shape_ptr

Shape

brush

std::shared_ptr

brush_ptr

Brush

Drawing tool

brush

The resource can still be shared through pointers and references,
but also using the std::shared_ptr copy constructor and copy
assignment operator.

Example: Abstract Factory 1

class ShapeFactory
{

Shape * CreateShape () = 0;
};

class CircleFactory : public ShapeFactory
{

Shape * CreateShape ()
{

std :: unique_ptr <Shape > shape_ptr (new Circle ());

// ...

return shape_ptr . release ();
};

};

The pointer will be deleted if
something happens in between

Hope that whoever takes ownership over the newly created Shape
object manages it properly.

Example: Abstract Factory 2

class ShapeFactory
{

std :: unique_ptr <Shape > CreateShape () = 0;
};

class CircleFactory : public ShapeFactory
{

std :: unique_ptr <Shape > CreateShape ()
{

std :: unique_ptr <Shape > shape_ptr (new Circle ());

// ...

return shape_ptr ;
};

};

OK, because it is turned into an rvalue.

The new owner of the Shape object is forced to manage its
memory properly.

Problems with explicit new’s: #1

Consider creating a std::shared_ptr with a new statement

std :: shared_ptr <MyClass > ptr(new MyClass ());

Naïve construction

Call MyClass
constructor

Call std::shared_ptr
constructor

pass pointer
to newly constructed

MyClass object

The constructors are called separately and the compiler cannot
optimise memory location.

Problems with explicit new’s: #2

void ProcessObject (std :: shared_ptr <MyClass > obj ,
int process_id);

ProcessObject (std :: shared_ptr <MyClass >(new MyClass ()),
GetProcessID ());

MyClass
constructor GetProcessID()

std::shared_ptr
constructor GetProcessID()

MyClass
constructor

GetProcessID()
std::shared_ptr

constructor

Problems with explicit new’s: #2

void ProcessObject (std :: shared_ptr <MyClass > obj ,
int process_id);

ProcessObject (std :: shared_ptr <MyClass >(new MyClass ()),
GetProcessID ());

MyClass
constructor GetProcessID()

std::shared_ptr
constructor GetProcessID()

MyClass
constructor

GetProcessID()
std::shared_ptr

constructor

Create using std::make_unique and std::make_shared

Both these problems can be remedied by using
std::make_shared and std::make_unique (C++14).

void ProcessObject (std :: shared_ptr <MyClass > obj ,
int process_id);

ProcessObject (std :: make_shared <MyClass >() ,
GetProcessID ());

Replacing the constructor call

Constructor calls cannot be intertwined with the GetProcessID()
anymore.

Create using std::make_unique and std::make_shared

Don’t use explicit new, delete, and owning *
pointers, except in rare cases encapsulated inside
the implementation of a low-level data structure.

Guideline

Herb Sutter [6]

Match constructors with destructors
Smart pointers have a control block which also keeps track of an
allocator and a deleter

template <class Type , class Deleter , class Alloc >
std :: shared_ptr (Type * p, Deleter d, Alloc a);

std::shared_ptr constructor

std :: shared_ptr <int > ap(new int [10]) ;

std :: shared_ptr <int > ap(new int [10] ,
std :: default_delete <int [] >());

std :: shared_ptr <int []> ap(new int [10]) ;

Custom deleter
Destructs using
delete

Destructs using
delete[]

Destructs using
delete[]

Very important that the deleter doesn’t throw.

Passing smart pointers

There are many options for passing smart pointers to functions
(and classes).

void foo(MyClass *);
void foo(MyClass &);
void foo(std :: unique_ptr <MyClass >);
void foo(std :: unique_ptr <MyClass > &);
void foo(std :: shared_ptr <MyClass >);
void foo(std :: shared_ptr <MyClass > &);

Passing smart pointers

All of these has a distinct meaning, use them to express yourself.

Smart pointers and polymorphic classes

Using smart pointers and polymorphic classes as template
arguments works as expected because one of the smart pointer
constructors read:

template < class T, class U>
std :: shared_ptr <T >(const std :: shared_ptr <U> &)

The std::shared_ptr constructor

This costructor can be used to convert between
std::shared_ptr’s if U* is implicitly convertible to T*.

Smart pointers and polymorphic classes

Assume we have a class hierarchy:

Base

void print();
void print() const;

Derived

void print();
void sum();

Where Derived overloads the print() function but not the
const variant.

Smart pointers and polymorphic classes

std :: shared_ptr <Derived > d_ptr =
std :: make_shared <Derived >();

std :: shared_ptr <Base > b_ptr = d_ptr ;
std :: shared_ptr < const Base > b_const_ptr = d_ptr ;

std :: shared_ptr <Derived > d_err_ptr = b_ptr ;
std :: shared_ptr <Base > b_err_ptr = b_const_ptr ;

b_ptr -> print ();
b_const_ptr -> print ();

// use_count : 3

Compilation error
Compilation error

Calls Derived::print()
Calls Base::print()const

Smart pointers and polymorphic classes

std :: shared_ptr <Derived > d_ptr =
std :: make_shared <Derived >();

std :: shared_ptr <Base > b_ptr = d_ptr ;
std :: shared_ptr < const Base > b_const_ptr = d_ptr ;

std :: shared_ptr <Derived > d_new_ptr =
std :: dynamic_pointer_cast <Derived >(b_ptr);

std :: shared_ptr <Base > b_new_ptr =
std :: const_pointer_cast <Base >(b_const_ptr);

d_new_ptr ->sum ();
b_new_ptr -> print ();

// use_count : 5

OK!

OK!

Calls Derived::sum()
Calls Derived::print()

Smart pointers and the STL

Smart pointers can be stored in the STL containers.
However, not all algorithms work with the resulting
containers.

E.g. std::unique_ptr is MoveConstructible and
MoveAssignable
But not CopyConstructable or CopyAssignable

Thus if an algorithm requires CopyConstructability and a
std::unique_ptr is given, it should fail to compile.

std::auto_ptr on the other hand is a bit more unreliable.

The boost pointer container library
Library inteded to provide a STL-like library for single ownership
pointers.

Simplifies the container-of-pointer syntax.
Notational convenience

Dereferencing an iterator returns a dereferenced pointer
Introduces “Clonability” to do deep copies.
Faster and has a small memory overhead.

Advantages

Not very compatible with the algorithm library
Not as flexible as a container of smart pointers

Disadvantages

Summary

Use smart pointers to manage dynamic resources so that they
are freed when they aren’t used anymore.

Use std::unique_ptr to signal singular ownership

Use std::shared_ptr to signal shared ownership

Use std::weak_ptr to signal uncommitted shared ownership

Avoid using explicit new and delete statements, and explicit
ownership of raw pointers.

