
const-correctness in C++

Matthias Kretz

Frankfurt Institute for Advanced Studies

Institute for Computer Science

Goethe University Frankfurt

2015-04-01

HGS-HIRe
Helmholtz Graduate School for Hadron and Ion Research



Introduction & Technicalities Consequences for Interface Design

Acknowledgements

My sources for inspiration:

• https://isocpp.org/wiki/faq/const-correctness

• https://en.wikipedia.org/wiki/Const-correctness

• http:
//www.cprogramming.com/tutorial/const_correctness.html

Matthias Kretz FIAS, Goethe University 2015-04-01 2
FIAS Frankfurt Institute
for Advanced Studies

https://isocpp.org/wiki/faq/const-correctness
https://en.wikipedia.org/wiki/Const-correctness
http://www.cprogramming.com/tutorial/const_correctness.html
http://www.cprogramming.com/tutorial/const_correctness.html


Introduction & Technicalities Consequences for Interface Design

Where can you use const?

• variables (global, local, member)

• function parameters

• member functions

• type aliases (typedef , using)

Matthias Kretz FIAS, Goethe University 2015-04-01 3
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Where can you use const?

• variables (global, local, member)

• function parameters

• member functions

• type aliases (typedef , using)

Matthias Kretz FIAS, Goethe University 2015-04-01 3
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

It’s part of the type!

is_same<int, const int>::value == false

is_same<int, const int&>::value == false

is_same<int*, const int*>::value == false

is_same<const int*, int const*>::value == true

is_same<int*, int* const>::value == false

is_same<int, int&>::value == false

is_same<int, volatile int>::value == false

is_same<const int, volatile int>::value == false

is_same<const int, const volatile int>::value == false

Matthias Kretz FIAS, Goethe University 2015-04-01 4
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Function Arguments allow for Conversions

Given the function f(const int &) , are the following calls

valid?

• const int n = 1; f(n);

OK: takes the address of n to pass a reference to const int& .

• f(1);

OK: Compiler generates an anonymous constant 1 in

memory.

• int n = 1; f(n);

OK: int& is implicitly converted to const int& . A const-ref

to a non-const variable is always fine.

Matthias Kretz FIAS, Goethe University 2015-04-01 5
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Function Arguments allow for Conversions

Given the function f(const int &) , are the following calls

valid?

• const int n = 1; f(n);
OK: takes the address of n to pass a reference to const int& .

• f(1);

OK: Compiler generates an anonymous constant 1 in

memory.

• int n = 1; f(n);

OK: int& is implicitly converted to const int& . A const-ref

to a non-const variable is always fine.

Matthias Kretz FIAS, Goethe University 2015-04-01 5
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Function Arguments allow for Conversions

Given the function f(const int &) , are the following calls

valid?

• const int n = 1; f(n);
OK: takes the address of n to pass a reference to const int& .

• f(1);

OK: Compiler generates an anonymous constant 1 in

memory.

• int n = 1; f(n);

OK: int& is implicitly converted to const int& . A const-ref

to a non-const variable is always fine.

Matthias Kretz FIAS, Goethe University 2015-04-01 5
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Function Arguments allow for Conversions

Given the function f(const int &) , are the following calls

valid?

• const int n = 1; f(n);
OK: takes the address of n to pass a reference to const int& .

• f(1);
OK: Compiler generates an anonymous constant 1 in

memory.

• int n = 1; f(n);

OK: int& is implicitly converted to const int& . A const-ref

to a non-const variable is always fine.

Matthias Kretz FIAS, Goethe University 2015-04-01 5
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Function Arguments allow for Conversions

Given the function f(const int &) , are the following calls

valid?

• const int n = 1; f(n);
OK: takes the address of n to pass a reference to const int& .

• f(1);
OK: Compiler generates an anonymous constant 1 in

memory.

• int n = 1; f(n);

OK: int& is implicitly converted to const int& . A const-ref

to a non-const variable is always fine.

Matthias Kretz FIAS, Goethe University 2015-04-01 5
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Function Arguments allow for Conversions

Given the function f(const int &) , are the following calls

valid?

• const int n = 1; f(n);
OK: takes the address of n to pass a reference to const int& .

• f(1);
OK: Compiler generates an anonymous constant 1 in

memory.

• int n = 1; f(n);
OK: int& is implicitly converted to const int& . A const-ref

to a non-const variable is always fine.

Matthias Kretz FIAS, Goethe University 2015-04-01 5
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;

error: missing initialization

• const int b = 1;

normal constant, consider constexpr int b = 1; instead

• int c = b;

copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;

normal constant, consider constexpr int b = 1; instead

• int c = b;

copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;

normal constant, consider constexpr int b = 1; instead

• int c = b;

copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;

copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;

copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;
copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;
copy value to a non-const variable

• int &d = b;

error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;
copy value to a non-const variable

• int &d = b;
error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;
copy value to a non-const variable

• int &d = b;
error: non-const reference to immutable variable

• const int &e = c;

immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Tell me what you see:

• const int a;
error: missing initialization

• const int b = 1;
normal constant, consider constexpr int b = 1; instead

• int c = b;
copy value to a non-const variable

• int &d = b;
error: non-const reference to immutable variable

• const int &e = c;
immutable reference to c (which may still be modified)

“If a program calls for the default initialization of an object of a const-qualified type
T, T shall be a class type with a user-provided default constructor.”

Matthias Kretz FIAS, Goethe University 2015-04-01 6
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Digression: constexpr

• constexpr is a new keyword since C++11

• short for: constant expression

• use it for constants that can be evaluated at compile time

• template arguments must be constant expressions

• no storage & linkage requirements unless the address of a

constexpr “variable” is taken

Matthias Kretz FIAS, Goethe University 2015-04-01 7
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

const Member Functions

struct A {
void f(); // (1)
void f() const; // (2)

};
A a;
const A c;

• a.f() calls

(1)

• c.f() calls

(2)

The function overloads match on the this pointer. Consider that

the compiler actually emits the functions void A::f(A *this)
and void A::f(const A *this) for A::f .

Matthias Kretz FIAS, Goethe University 2015-04-01 8
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

const Member Functions

struct A {
void f(); // (1)
void f() const; // (2)

};
A a;
const A c;

• a.f() calls (1)

• c.f() calls (2)

The function overloads match on the this pointer. Consider that

the compiler actually emits the functions void A::f(A *this)
and void A::f(const A *this) for A::f .

Matthias Kretz FIAS, Goethe University 2015-04-01 8
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

So what does it do?
…besides modifying the type

• const builtin types cannot be assigned to

• non-const implicitly converts to const

• const cannot implicitly convert to non-const

• better: only const_cast can cast away const
get rid of C-casts! (-Wold-style-cast)

• Note, you can cast away const!

• You can write

struct X { void operator=(T) const; }; .

And thus have a const X variable that is assignable.

• As so often, you can use good to create bad …

Why const if there’s no guarantee that it stays const?

Matthias Kretz FIAS, Goethe University 2015-04-01 9
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

So what does it do?
…besides modifying the type

• const builtin types cannot be assigned to

• non-const implicitly converts to const

• const cannot implicitly convert to non-const

• better: only const_cast can cast away const
get rid of C-casts! (-Wold-style-cast)

• Note, you can cast away const!

• You can write

struct X { void operator=(T) const; }; .

And thus have a const X variable that is assignable.

• As so often, you can use good to create bad …

Why const if there’s no guarantee that it stays const?

Matthias Kretz FIAS, Goethe University 2015-04-01 9
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

mutable

We need to cover one more.

mutable makes member variables mutable in const member

functions.

Matthias Kretz FIAS, Goethe University 2015-04-01 10
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

mutable

What does mutable do?

mutable makes member variables mutable in const member

functions.

Matthias Kretz FIAS, Goethe University 2015-04-01 10
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

mutable

What does mutable do?

mutable makes member variables mutable in const member

functions.

Matthias Kretz FIAS, Goethe University 2015-04-01 10
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

What did the C++ designers intend when they conceived const?

physically constant: the bits in memory/registers do not change

logically constant: the observable state of an object/variable

does not change

The class interface designer is responsible for correctly

implementing logically constant semantics.

Matthias Kretz FIAS, Goethe University 2015-04-01 11
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

const means logically constant, not physically constant.

physically constant: the bits in memory/registers do not change

logically constant: the observable state of an object/variable

does not change

The class interface designer is responsible for correctly

implementing logically constant semantics.

Matthias Kretz FIAS, Goethe University 2015-04-01 11
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

An Example

1 class A {
2 double x = 1.;
3 public:
4 double value() const { return x; }
5 void setValue(double xx) { x = xx; }
6 double transformed() const { return expensiveFunction(x); }
7 };

• This interface is const-correct:

• A::value and A::transformed keep the state constant

• A::setValue modifies the state

• Consider a typical use pattern of zero or many calls to

A::transformed
zero better never evaluate expensiveFunction
many better evaluate expensiveFunction only once

per new x

Matthias Kretz FIAS, Goethe University 2015-04-01 12
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

An Example cont.

1 class A2 {
2 double x = 1.;
3 static constexpr double dirty_value =
4 std::numeric_limits<double>::infinity();
5 double cached = dirty_value;
6 public:
7 double value() const { return x; }
8 void setValue(double xx) {
9 x = xx;

10 cached = dirty_value;
11 }
12 double transformed() /* not const! */ {
13 if (cached == dirty_value) {
14 cached = expensiveFunction(x);
15 }
16 return cached;
17 }
18 };

Matthias Kretz FIAS, Goethe University 2015-04-01 13
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

An Example cont..

• The interface of A2 is not const-correct!

• A2::transformed does not change the observable state

⇒ it should be const .

• A2::transformed requires callers to to use a non-const

object.

⇒ removal of const from other logically constant functions

(Which might even appear physically constant in their

implementation)

Solutions?

Matthias Kretz FIAS, Goethe University 2015-04-01 14
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Solutions

• const_cast

• mutable

Always prefer mutable over const_cast!

Matthias Kretz FIAS, Goethe University 2015-04-01 15
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

An Example cont...

1 class A3 {
2 double x = 1.;
3 static constexpr double dirty_value =
4 std::numeric_limits<double>::infinity();
5 mutable double cached = dirty_value;
6 public:
7 double value() const { return x; }
8 void setValue(double xx) {
9 x = xx;

10 cached = dirty_value;
11 }
12 double transformed() const { // keeps logical state
13 if (cached == dirty_value) {
14 cached = expensiveFunction(x); // modifies physical state
15 }
16 return cached;
17 }
18 };

Matthias Kretz FIAS, Goethe University 2015-04-01 16
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

What does the interface of A3 tell you?

• That A3::transformed is const says:

• repeated calls to A3::transformed return the same value

• That A3::value is const says:

• interleaving calls to A3::value does not change

A3::transformed

• That A3::setValue is not const says:

• after the call the state of the object has changed

• return values of member functions may change as a result

However, the compiler cannot rely on this for optimization.

Consider global variables, mutable , and const_cast …

Matthias Kretz FIAS, Goethe University 2015-04-01 17
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

const implicitly documents the interface

• That A3::transformed is const says:

• repeated calls to A3::transformed return the same value

• That A3::value is const says:

• interleaving calls to A3::value does not change

A3::transformed

• That A3::setValue is not const says:

• after the call the state of the object has changed

• return values of member functions may change as a result

However, the compiler cannot rely on this for optimization.

Consider global variables, mutable , and const_cast …

Matthias Kretz FIAS, Goethe University 2015-04-01 17
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

const implicitly documents the interface

• That A3::transformed is const says:

• repeated calls to A3::transformed return the same value

• That A3::value is const says:

• interleaving calls to A3::value does not change

A3::transformed

• That A3::setValue is not const says:

• after the call the state of the object has changed

• return values of member functions may change as a result

However, the compiler cannot rely on this for optimization.

Consider global variables, mutable , and const_cast …

Matthias Kretz FIAS, Goethe University 2015-04-01 17
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Takeaways

1 const means logically constant.

2 Decide on constness of member functions based on logical

state.

3 Use const to document interfaces.

4 Use const to make your interfaces harder/impossible to use

incorrectly.

5 Design const-correct code from the beginning of the project.

6 Use constexpr for constants that can be evaluated at

compile time.

A different talk should add:

7 const member functions need to be thread-safe.

8 mutable member variable access needs to be atomic.

Matthias Kretz FIAS, Goethe University 2015-04-01 18
FIAS Frankfurt Institute
for Advanced Studies



Introduction & Technicalities Consequences for Interface Design

Introduction & Technicalities

Consequences for Interface Design

Matthias Kretz FIAS, Goethe University 2015-04-01
FIAS Frankfurt Institute
for Advanced Studies


	Introduction & Technicalities
	Consequences for Interface Design

