
Template Meta Programming

Jonas R. Glesaaen
glesaaen@th.physik.uni-frankfurt.de

May 27th 2015

Literature

[1] Boost c++ library.
http://www.boost.org.

[2] C++ reference.
http://cppreference.com.

[3] D. Abrahams and A. Gurtovoy.
C++ Template Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond.
Pearson Education, 2004.

[4] A. Alexandrescu.
Modern C++ design.
Addison-Wesley, 2001.

http://www.boost.org
http://cppreference.com

What is Template Meta Programming?

Programming using the template interface of C++ so that certain
common computations can be carried out at compile time.

The "language" is functional in nature, no mutable data.

Advantages:

Reduce code duplication
Increase readability
Move error checks to compile time
More sophisticated type checking and lookup

What is Template Meta Programming?

Programming using the template interface of C++ so that certain
common computations can be carried out at compile time.

The "language" is functional in nature, no mutable data.

Advantages:

Reduce code duplication
Increase readability
Move error checks to compile time
More sophisticated type checking and lookup20

15
-0

5-
27

TMP

What is Template Meta Programming?

• It is the next step in reducing code duplication over templates.
While templates by themselves do a good job, using meta
programming we can add additional checks and requirements on our
types before choosing specialisations.

• Increase readability is a bit of an odd one as TMP is quite hard to
read in my opinion. However, meta programming can be used to for
example inline horrible low level algorithms into your code for
specialised cases, and do for example loop unravelling and such.
Leaving the code nice and readable while still being efficient at
runtime.

• Always great to move error checks to happen as early as absolutely
possible. Specially if a try-block is in a rarely executed part of your
program. Also see our discussions on physics units in C++ to
prevent other types of mistakes.

Looks familiar?
Type traits

template <class Itt >
void iterator_swap (Itt first , Itt second)
{

typedef typename std :: iterator_traits <Itt >:: value_type ←↩

→ iterator_deref_type ;

iterator_deref_type temp_value = * first ;

* first = * second ;
* second = temp_value ;

}

Looks familiar?
Type traits

template <class Itt >
void iterator_swap (Itt first , Itt second)
{

typedef typename std :: iterator_traits <Itt >:: value_type ←↩

→ iterator_deref_type ;

iterator_deref_type temp_value = * first ;

* first = * second ;
* second = temp_value ;

}

20
15

-0
5-

27
TMP

Looks familiar?

First, ignore the fact that this is horribly optimized, and the fact that the
problem here is easily solved by auto, also that it could be circumvented
by using std::swap.

Also, auto doesn’t necessarily give what you want when you have a
proxy object with a conversion as auto will create an object of the same
time, circumventing the conversion.

We ask the compiler to find out what type dereferencing the iterator gets
us using the handy iterator_traits function. The iterator itself do
not necessarily contain this information so iterator_traits must be
specialised for say raw pointers. More on that in a bit.

Looks familiar?
enable_if (C++14)

template <
class Itt ,
typename = std :: enable_if_t <

!std :: is_same <
typename std :: iterator_traits <Itt >:: value_type ,
void

>:: value
>

>
void iterator_function (Itt first , Itt second)
{

// ...
}

Looks familiar?
enable_if (C++14)

template <
class Itt ,
typename = std :: enable_if_t <

!std :: is_same <
typename std :: iterator_traits <Itt >:: value_type ,
void

>:: value
>

>
void iterator_function (Itt first , Itt second)
{

// ...
}20

15
-0

5-
27

TMP

Looks familiar?

Ignoring the SFINAE thingy going on, we basically ask the compiler to
calculate the expression !(Itt::value_type == void) at compile
time.

Recap: Template Specialisation

Heavily used in TMP to signal return paths and branch points for
control structures.

template <class Itt >
struct iterator_traits
{

typedef typename Itt :: value_type value_type ;
};

template <class Type*>
struct iterator_traits
{

typedef Type value_type ;
};

iterator_traits

Recap: Template Specialisation

Heavily used in TMP to signal return paths and branch points for
control structures.

template <class Itt >
struct iterator_traits
{

typedef typename Itt :: value_type value_type ;
};

template <class Type*>
struct iterator_traits
{

typedef Type value_type ;
};

iterator_traits
20

15
-0

5-
27

TMP

Recap: Template Specialisation

iterator_traits’ existance is motivated by the fact that you can’t
call ::value_type on a pointer. On top of that it is also useful in its
own right, if only to create a unified interface for meta functions.

The Fundamental Theorem of Software Engineering (FTSE). We can
solve any problem by introducing an extra level of indirection. (Butler
Lampson)

When do you need typename?

typename is used to tell the compiler that what is coming up is a
type. Used when you have a dependent name.

template <class Type >
typename traits_func <Type >:: value_type // ...

typename keyword

Exactly what traits_func<Type>::value_type is cannot be
known at point of definition because of possible template
specialisation. typename fixes that issue.

::value_type is said to be a dependent type.

When do you need typename?

typename is used to tell the compiler that what is coming up is a
type. Used when you have a dependent name.

template <class Type >
typename traits_func <Type >:: value_type // ...

typename keyword

Exactly what traits_func<Type>::value_type is cannot be
known at point of definition because of possible template
specialisation. typename fixes that issue.

::value_type is said to be a dependent type.

20
15

-0
5-

27
TMP

When do you need typename?

Because of this it is generally a good idea to use the class keyword
when giving a template a name so that it doesn’t get mixed with
typename’s needed for dependent names.

When do you need template?

If the template class itself is a template, or has a template
function, we need to tell the compiler.

template <class Type , unsigned N>
void foo(int x)
{

Type :: function <N >(x);
};

template keyword

which is interpreted as
(Type :: function < N) > x;

When do you need template?

If the template class itself is a template, or has a template
function, we need to tell the compiler.

template <class Type , unsigned N>
void foo(int x)
{

Type :: template function <N >(x);
};

template keyword

template is required when a dependent name access a template
via ., -> or ::.

The Canonical Example

template < unsigned n>
struct Factorial
{

enum { value = n * Factorial <n -1 >:: value };
};

template <>
struct Factorial <0>
{

enum { value = 1 };
};

int main(int , char **)
{

std :: cout << Factorial <10 >:: value << std :: endl;
}

Runtime constant

The Canonical Example

template < unsigned n>
struct Factorial
{

enum { value = n * Factorial <n -1 >:: value };
};

template <>
struct Factorial <0>
{

enum { value = 1 };
};

int main(int , char **)
{

std :: cout << Factorial <10 >:: value << std :: endl;
}

Runtime constant20
15

-0
5-

27
TMP

The Canonical Example

Make use of the trick that for the compiler to be able to give you an
object of type Factorial<10> it first need to initialise an object of
type Factorial<9>, and so on. It continues until it hits the template
specialisation Factorial<0> which we have predefined and requires no
more initialisations.

Vocabulary
Metadata

A constant "value" accessible by calling ::value

Metafunction
A function which takes its arguments as template arguments, and
the result is stored in ::type

some_metafunction <Arg1 , Arg2 >:: type

Metafunction class
A function object that itself can be treated as a type. Function call
accessed by a nested metafunction named apply

struct some_metafunction
{

template <class Arg1 , class Arg2 >
struct apply
{

// ...
};

};

Vocabulary
Metadata

A constant "value" accessible by calling ::value

Metafunction
A function which takes its arguments as template arguments, and
the result is stored in ::type

some_metafunction <Arg1 , Arg2 >:: type

Metafunction class
A function object that itself can be treated as a type. Function call
accessed by a nested metafunction named apply

struct some_metafunction
{

template <class Arg1 , class Arg2 >
struct apply
{

// ...
};

};

20
15

-0
5-

27
TMP

Vocabulary

Metadata: Also known as an integral constant wrapper.

The metafunction class is the metaprogramming version of a functor,
what you would pass to say STL library iterators such as
std::for_each and std::copy_if. In metaprogramming this is
even more important than normal as we rely much more heavily on
passing function objects around when we have no mutable data.

Example: Multiplication

template <int N>
struct integer
{

constexpr static int value = N;
typedef integer type;

};

template <class Arg1 , class Arg2 >
struct multiply
{

typedef integer < Arg1 :: value * Arg2 :: value > type;
};

int main(int , argc **)
{

typedef integer <5> five;
typedef integer <-9> m_nine ;

std :: cout << multiply <five ,m_nine >:: type :: value
<< std :: endl;

}

Example: Multiplication
template <int N>
struct integer
{

constexpr static int value = N;
typedef integer type;

};

template <class Arg1 , class Arg2 >
struct multiply

: integer < Arg1 :: value * Arg2 :: value >
{};

int main(int , argc **)
{

typedef integer <5> five;
typedef integer <-9> m_nine ;

std :: cout << multiply <five ,m_nine >:: type :: value
<< std :: endl;

std :: cout << multiply <five ,m_nine >:: value
<< std :: endl;

}

Metafunction
forwarding

Example: Multiplication
template <int N>
struct integer
{

constexpr static int value = N;
typedef integer type;

};

template <class Arg1 , class Arg2 >
struct multiply

: integer < Arg1 :: value * Arg2 :: value >
{};

int main(int , argc **)
{

typedef integer <5> five;
typedef integer <-9> m_nine ;

std :: cout << multiply <five ,m_nine >:: type :: value
<< std :: endl;

std :: cout << multiply <five ,m_nine >:: value
<< std :: endl;

}

Metafunction
forwarding

20
15

-0
5-

27
TMP

Example: Multiplication

Function definition through inheritance is called metafunction forwarding,
and it is one of the resons why we defined the type of the integer
wrapper, so that we can more easily keep the language consistent.

See what we can access its value both through
multiply<x,y>::type::value and multiply<x,y>::value.
The first interface is expected to be there, while the second is a shortcut
sometimes implemented into numerical metafunctions.

Higher Order Metafunctions

As TMP inherently is a functional programming language, it is best
at doing those kind of computations, computations with functions.

Let us implement the nest function so that:

nest(f,x,5) = f(f(f(f(f(x)))))

Assume that the integer and multiply still are defined as
previous.

Higher Order Metafunctions
template <class F, class X, unsigned N>
struct nest

: nest <F, typename F:: template apply <X >:: type , N-1>
{};

template <class F, class X>
struct nest <F,X,0>

: X
{};

struct squared_f
{

template <class Arg >
struct apply

: multiply <Arg ,Arg >
{};

};

int main(int , char **)
{

typedef integer <5> five;
nest <squared_f ,five ,3 >:: type :: value ; // ((5^2) ^2) ^2

}

Template
specialisation

Metafunction
class

Higher Order Metafunctions
template <class F, class X, unsigned N>
struct nest

: nest <F, typename F:: template apply <X >:: type , N-1>
{};

template <class F, class X>
struct nest <F,X,0>

: X
{};

struct squared_f
{

template <class Arg >
struct apply

: multiply <Arg ,Arg >
{};

};

int main(int , char **)
{

typedef integer <5> five;
nest <squared_f ,five ,3 >:: type :: value ; // ((5^2) ^2) ^2

}

Template
specialisation

Metafunction
class

20
15

-0
5-

27
TMP

Higher Order Metafunctions

First notice that we need to pass a metafunction class to nest as a
metafunction without arguments isn’t a type in itself. We cannot write
nest<multiply,Var,N> because multiply isn’t defined without it’s
template arguments. We will see in a bit that we can do exactly that (or
something similar) using MPL placeholders, but more on that later.

The MPL boost library
Collection of useful types and definitions to simplify TMP

Metadata wrappers:
bool_, int_<N>, long_<N>, . . .

Arithmetic functions and logic operators:
plus<Arg1,Arg2>, times<Arg1,Arg2>, . . .
less<Arg1,Arg2>, equal_to<Arg1,Arg2>, . . .
and_<Arg>, or_<Arg>, nor_<Arg>

Lambda functions and placeholders
Type selection

if_<Pred,Func1,Func2>,
eval_if<Pred,Func1,Func2>

Containers and iterators
vector<Arg1,Arg2,...,ArgN>,
set<Arg1,Arg2,...,ArgN>, . . .
next<It>, prior<It>, advance<It,N>, . . .

STL like algorithm library
transform<Seq,Fun>, copy_if<Seq,Pred>, . . .

The MPL boost library
Collection of useful types and definitions to simplify TMP

Metadata wrappers:
bool_, int_<N>, long_<N>, . . .

Arithmetic functions and logic operators:
plus<Arg1,Arg2>, times<Arg1,Arg2>, . . .
less<Arg1,Arg2>, equal_to<Arg1,Arg2>, . . .
and_<Arg>, or_<Arg>, nor_<Arg>

Lambda functions and placeholders
Type selection

if_<Pred,Func1,Func2>,
eval_if<Pred,Func1,Func2>

Containers and iterators
vector<Arg1,Arg2,...,ArgN>,
set<Arg1,Arg2,...,ArgN>, . . .
next<It>, prior<It>, advance<It,N>, . . .

STL like algorithm library
transform<Seq,Fun>, copy_if<Seq,Pred>, . . .

20
15

-0
5-

27
TMP

The MPL boost library

Functions such as if_<Pred,Func1,Func2> takes as an argument a
metadata object and returns the first type Func1 if
Pred::type::value is true and the type Func2 if it is false.
There are also integer version of most such functions, denoted by an _c,
so that e.g. if_c<bool,Func1,Func2> can be passed a bool instead
of a metadata for convenience.

Remember that TMP has no mutable objects, so e.g. transform will
return the transformed sequence rather than copying it to another
sequece object (or itself).

Lambda functions and placeholders

First!

We will assume that we have the following header on all our code
to reduce the examples:

namespace mpl = boost :: mpl;
using namespace mpl :: placeholders ;

If not, we would have to write the following everywhere we wanted
an MPL placeholder:

boost :: mpl :: placeholders ::_1 ,
boost :: mpl :: placeholders ::_2 ,
boost :: mpl :: placeholders ::_3 , ...

which gets tedious...

Lambda functions and placeholders

Lambda functions are a signature part of any functional
programming language and also go very well with STL like
algorithms.

From our example earlier with square_f<Arg>, that function in
itself seems a bit redundant as it can easily be written as
multiply<Arg,Arg> with the same argument. But we run into
two problems:

The multiply function is a metafunction, while the nest
function takes a metafunction class (a functor).
We have no way of reducing multiply’s argument list to only
take one argument

MPL’s placeholders solve this!

Lambda functions and placeholders

template <class F, class X, unsigned N>
struct nest

: nest <F, typename F:: template apply <X >:: type , N-1>
{};

template <class F, class X>
struct nest <F,X,0>

: X
{};

int main(int , char **)
{

typedef integer <5> five;
nest <

mpl :: lambda < multiply <_1 ,_1 > >:: type ,five ,3
>:: type :: value ;

}

With MPL lambda functions

Lambda functions and placeholders

template <class F, class X, unsigned N>
struct nest

: nest <F, typename mpl :: apply <F,X >:: type , N-1>
{};

template <class F, class X>
struct nest <F,X,0>

: X
{};

int main(int , char **)
{

typedef integer <5> five;
nest <multiply <_1 ,_1 >,five ,3 >:: type :: value ;

}

With mpl::apply and placeholders

Lambda functions and placeholders

template <class F, class X, unsigned N>
struct nest

: nest <F, typename mpl :: apply <F,X >:: type , N-1>
{};

template <class F, class X>
struct nest <F,X,0>

: X
{};

int main(int , char **)
{

typedef integer <5> five;
nest <multiply <_1 ,_1 >,five ,3 >:: type :: value ;

}

With mpl::apply and placeholders

20
15

-0
5-

27
TMP

Lambda functions and placeholders

First option is to use mpl::lambda to change the call to nest without
changing nest itself. As one can see, using the MPL lambda functions is
very flexible and can easily be incorporated to work with existing
metaprograms.

The special mpl::apply function scans the Func type and turns it into
a metafunction class if it contains any placeholders.

Could of course use mpl::int_<N> and mpl::times<Arg1,Arg2>
throughout, but we will stick with our previously defined metadata and
metafunctions to see that they are compatible with the rest of boost.

Control structures
Previously: Used template specialisation to switch between
implementations

template <class Type , bool FastImpl >
struct algorithm
{

void operator () (const Type &)
{

// faster algorithm
}

};

template <class Type >
struct algorithm <Type ,false >
{

void operator () (const Type &)
{

// safer algorithm
}

};

Simple template specialisation

Specialised for
FastImpl = false

Control structures

With TMP we can do more sophisticated checks and switches

struct fast_algorithm
{

template <class Itt1 , class Itt2 >
static void execute (Itt1 , Itt2);

};

struct safe_algorithm
{

template <class Itt1 , class Itt2 >
static void execute (Itt1 , Itt2);

};

One more level of indirection

Control structures

With TMP we can do more sophisticated checks and switches

struct algorithm
{

template <class Itt1 , class Itt2 >
static void execute (Itt1 i1 , Itt2 i2)
{

mpl ::if_ <
typename mpl :: and_ <

is_random_access <Itt1 >,
is_random_access <Itt2 >

>::type ,
fast_algorithm ,
safe_algorithm

>:: type :: execute (i1 ,i2);
}

};

Choosing an implementation

Control structures

With TMP we can do more sophisticated checks and switches

struct algorithm
{

template <class Itt1 , class Itt2 >
static void execute (Itt1 i1 , Itt2 i2)
{

mpl ::if_ <
typename mpl :: and_ <

is_random_access <Itt1 >,
is_random_access <Itt2 >

>::type ,
fast_algorithm ,
safe_algorithm

>:: type :: execute (i1 ,i2);
}

};

Choosing an implementation
20

15
-0

5-
27

TMP

Control structures

See that we have a unified interface that itself makes sure that it isn’t
misused and chooses the correct implementation depending on the type it
is given.

Example usage: could unify the STL sort algorithm. std::sort only
takes random access operators, while things such as std::set and
std::map come pre sorted and std::list have a sorting member
function. Could write a function that takes arbitrary containers or
iterators and use the correct implementation behind the scene.
Drawback: hides the complexity of the operation.

Containers and iterators

boost provides a complete STL like container and algorithm library.

Different containers have different access concepts

Forward sequence
begin<S>, end<S>, size<S>, front<S>
push_front<S,x>, pop_front<S>
insert<S,it,x>, erase<S,it>, clear<s>
Bidirectional sequence
..., back<S>, push_back<S,x>, pop_back<S>
Random access sequence
..., at<S,n>

All functions return new sequences because we have no mutable
objects.

Containers and iterators: Short example
mpl::transform and mpl::vector

typedef mpl :: vector <
integer <3>, integer <7>, integer <-1> > my_vector ;

typedef mpl :: transform <
my_vector ,
multiply <_1 ,_1 >

>:: type square_vector ;

typedef mpl :: begin < square_vector >:: type begin ;
typedef mpl :: next <begin >:: type next;

mpl :: is_same <
mpl :: deref <next >:: type ,
integer <49 >

>:: value ;

Where to go from here?

Try it for yourself!

Try to write simple programs
Calculate an arithmetic sum
Sum up the elements of a vector
Implement your own for-loop
...

Study the literature
Familiarise yourself with the boost MPL library
See if you can make use of type switching in your own
programs
See if you can catch potential errors in your own programs

Summary

We have seen how we can use the C++ template system to
write metaprograms that look like normal programs.
Metadata are types that contain their value in a public
::value type.
Metafunctions are called by their public ::type type

some_metafunction <Arg1 ,Arg2 ,... , ArgN >:: type

Language facilitates a functional programming style with
functions that manipulate other functions
boost’s MPL library implement a lot of useful metafuntions
and types

