
Exception Safe Coding

Prof. Dr. Volker Lindenstruth
FIAS Frankfurt Institute for Advanced Studies
Goethe-Universität Frankfurt am Main,
Germany
http://compeng.uni-frankfurt.de

C++ User Group

17.06.2015

CBM

Dirk Hutter
hutter@compeng.uni-frankfurt.de

http://compeng.uni-frankfurt.de
mailto:hutter@compeng.uni-frankfurt.de

Dirk Hutter – C++ User Group – 2015-06-17

Introduction

• Part 1: Introduction on mechanics of exceptions

• Part 2: Exception safe coding guidelines

• Most material from http://exceptionsafecode.com (Jon Kalb)

• Assume everybody uses at least C++11

2

http://exceptionsafecode.com

Dirk Hutter – C++ User Group – 2015-06-17

Error Management

• Logical assertions that by design must be valid …
• … at compile time: static_assert()
• … at runtime: assert()

• Error conditions happening at runtime:
• Return codes

• Errors are ignored by default
• If a single call „breaks the chain“ errors are lost

• Error flagging (errno)
• Ambiguity which call failed
• Errors are ignored by default

• Exceptions
• Separate error detection from error handling
• Can’t be ignored
• Doesn’t mean they are easy to use

3

Dirk Hutter – C++ User Group – 2015-06-17

Throwing an Exception

• throw e;
• copy initializes the exception object from e and calls the exception handler
• e can be any object or a pointer

• All exceptions thrown by the standard library are inherited from
std::exception

• Good practice: throw something derived from std::exception
by value

4

void f() {
 // this part is executed
 throw std::runtime_error("Error: Something bad happened.");
 // this part is not executed
}

Dirk Hutter – C++ User Group – 2015-06-17

Catching an Exception

• Parameter to catch works like a function argument

• Exceptions can be modified and re-thrown

• throw;
• Re-throws the currently handles exception
• Passes it to the next enclosing exception handler
• Calls std::terminate if no active exception

• Good practice: catch by reference
• Otherwise issues with object slicing

5

catch (A& a) { // catch A by reference
 a.mutating_member();
 throw; // re-throws the exception
}

Dirk Hutter – C++ User Group – 2015-06-17

Try-Catch-Block

• multiple catch blocks can be used
• are evaluated in order of appearance
• for re-throw remaining catch blocks will not be evaluated

• catch(…) „catch all“ handler

6

try {
 f();
} catch(const std::runtime_error& e) {
 // this executes if f() throws std::runtime_error or something
 // derived form std::runtime_error
} catch(const std::exception& e) {
 // this executes if f() throws something derived from std::exception
} catch(...) {
 // this executes if f() throws any other unrelated type
}

Dirk Hutter – C++ User Group – 2015-06-17

Stack Unwinding

• If an exception is thrown:

• It propagates up the call stack until it reaches a try block

• On its way up destructors for all objects constructed since the
try block are called in reverse order of construction

• If a matching catch is found the control flow jumps into this
catch block, if not unwinding continues until the next enclosing
try block

• If no matching catch can be found or an exception is thrown
during stack unwinding std::terminate is called

7

Dirk Hutter – C++ User Group – 2015-06-17

noexcept

• Specifier whether a function will throw exceptions or not

• If a noexcept function throws std::terminate is called

• Destructors are noexcept by default

• Used for optimization: move if no-throw, else copy

• When should noexcept be used?
• When it is needed, not for every function

• Note: don’t use dynamic exception specification throw() anymore

8

void f(); // may throw anything

void g() noexcept(true); // never throws

void g() noexcept; // defaults to ture

Dirk Hutter – C++ User Group – 2015-06-17

noexcept

• Operator to check at compile time whether a function is
declared noexcept

9

inline int f() {return 0;}
static_assert(noexcept(f()) , ""); // fails!

inline int g() noexcept {return 0;}
static_assert(noexcept(g()) , ""); // true!

Dirk Hutter – C++ User Group – 2015-06-17

Performance of Exceptions

• No throw -> no cost
• no runtime overhead beside increased code size

• In case of throw
• Don’t know. Don’t care.
• Don’t use exceptions to steer your control flow

10

Dirk Hutter – C++ User Group – 2015-06-17

Function-Try-Block

• Associates catch clauses with a function body and the
member initializer list (if in constructor)

• Automatically re-throws at the end of the catch clause if in
constructor or destructor

• Primarily used to catch and modify exceptions from initializer
lists

11

struct S : public R
{
 S() try : R(), foo(2), bar(1) {
 // constuctor body
 }
 catch(...) {
 // catch exceptions form constructor body
 // and initializer list
 } // implicit throw;
}

Dirk Hutter – C++ User Group – 2015-06-17

Function-Try-Block vs. Try-Catch-Block

12

~S()
try // function-try-block
{
 // destructor body
}
catch (...)
{
} // implicit throw;

~S() {
try // try-catch-block
{
 // destructor body
}
catch (...)
{
}} // nothing special happens here

Dirk Hutter – C++ User Group – 2015-06-17

And even more…

• Nested exceptions

• Passing exceptions between threads
• std::exception_ptr can be copied between threads

13

int Func(); // might throw
std::future<int> f = std::async(Func());

int v(f.get()); // If Func() threw, it comes out here

Dirk Hutter – C++ User Group – 2015-06-17

Guidelines

• Throw by value

• Catch by reference

• Use throw; to re-throw

• Use exceptions derived from std::exception

14

Dirk Hutter – C++ User Group – 2015-06-17

Exception Safety Guarantees

• Formalized by David Abrahams

• No exception guarantee
• If a function throws anything can happen

• Basic exception guarantee
• If an exception is thrown, the object’s invariant is still valid and no resource

is leaked

• Strong exception guarantee
• If an exception is thrown, the object's state is as it was before the function

was called

• Nothrow exception guarantee
• No exception leaves the function

15

Dirk Hutter – C++ User Group – 2015-06-17

Exception Safe Code

• Everything must support the basic guarantee

• Strong guarantee should be supported where it is natural and
comes for free

• Nothrow guarantee in some special cases

16

Dirk Hutter – C++ User Group – 2015-06-17

Basic guarantee

17

Dirk Hutter – C++ User Group – 2015-06-17

How to not Terminate?

• If terminate is called there is no stack unwinding guaranteed

• std::terminate is called…

• … for unhandled exceptions

• … when re-throw without active exception

• … when noexcept function throws

• … when throwing exception inside active exception

• Destructors might throw!

18

Dirk Hutter – C++ User Group – 2015-06-17

Guideline

• Destructors must not throw

• Must deliver nothrow exception guarantee

• Cleanup must always be safe

• May throw internally but not emit

19

Dirk Hutter – C++ User Group – 2015-06-17

How to ensure not to leak?

• Stack unwinding will destruct all objects on the stack

• We are safe if …

… every resource is managed by one object on the stack and…

… every object releases all its resources on destruction

• Use smart pointers to manage heap objects

• Use RAII

20

Dirk Hutter – C++ User Group – 2015-06-17

Resource Acquisition is Initialisation (RAII)

• Resources are acquired in the
constructor
• If you have the object you have the

resource

• Resources are released in the
destructor
• Destructors must cleanup all of an

objects outstanding responsibilities

• If object is on the stack
everything is cleaned up
properly

21

class OpenFile {
public:
 OpenFile(const char* filename){
 //throws an exception on failure
 _file.open(filename);
 }

 ~OpenFile(){
 _file.close();
 }

 std::string readLine() {
 return _file.readLine();
 }

private:
 File _file;
};

Dirk Hutter – C++ User Group – 2015-06-17

Guidelines

• Use RAII

• Every object should manages only one resource

• Be sure all cleanup code is called by a destructor

• Cleanup must not throw

• Objects may have a additional release function

22

Dirk Hutter – C++ User Group – 2015-06-17

Aborted Construction

• What happens if an exception is thrown while constructing an
object?
• Base classes and data members are cleaned up by the runtime
• Everything we do in the constructor body needs to be cleaned up by us

• Guideline: Assign ownership of every resource, immediately
upon allocation, to a named manager object that manages no
other resources.

23

Dirk Hutter – C++ User Group – 2015-06-17

Assigning Resources to Smart Pointers

• Both objects are assigned to a smart pointer

• Is this safe?

24

FooBar(smart_ptr<Foo>(new Foo(f)),
 smart_ptr<Bar>(new Bar(b)));

Dirk Hutter – C++ User Group – 2015-06-17

Assigning Resources to Smart Pointers

• For smart pointers use make_shared, make_unique
• More efficient
• Safer

25

auto r(std::make_shared<Foo>(f));
auto s(std::make_unique<Foo>(f)); // C++14

template<typename T, typename ...Args>
std::unique_ptr<T> make_unique(Args&& ...args)
{
 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}

Dirk Hutter – C++ User Group – 2015-06-17

Leaking Object Memory

• If new calls an constructor that throws the matching operator
delete is called
• Object memory is not leaked

• For placement new with user defined args (other than void*)
there is no matching delete operator by default
• Memory is leaked

• Define matching „placement“ delete operator

26

Dirk Hutter – C++ User Group – 2015-06-17

Strong Exception Guarantee

• Think about a critical line
• Everything above can throw but doesn’t modify the original data
• Everything below must not throw

• Key function: swap with nothrow guarantee
• available if move of an object in nothrow

27

void FunctionWithStrongGuarantee() {
// Code That Can Fail
ObjectsThatNeedToBeModified.MakeCopies(OriginalObjects);
ObjectsThatNeedToBeModified.Modify();

// Code That Cannot Fail (Has a No-Throw Guarantee) !
ObjectsThatNeedToBeModified.swap(OriginalObjects); }

critical line

Dirk Hutter – C++ User Group – 2015-06-17

Where to catch?

• Switch
• Anywhere you need to switch the method of error reporting
• Where notrhrow needs to be supported, C-APIs, other exception types

• Strategy
• Anywhere you have a strategy to deal with an error, e.g. a fallback method

• Some Success
• Anywhere that partial failure is acceptable

28

Dirk Hutter – C++ User Group – 2015-06-17

Exception Safety Guidelines

• Throw by value, catch by reference

• Put try-catch-block with catch all in main

• Destructors must not throw

• User RAII
• Every responsibility is an object
• All cleanup code must be called by a destructor

• Use critical line for strong exception guarantee

• Know where to catch

29

Dirk Hutter – C++ User Group – 2015-06-17

Resources

• http://exceptionsafecode.com

• http://en.cppreference.com

• https://www.wikipedia.org

• http://herbsutter.com/gotw/_102/

• http://www.tomdalling.com/blog/software-design/resource-
acquisition-is-initialisation-raii-explained/

30

http://exceptionsafecode.com
http://en.cppreference.com
https://www.wikipedia.org
http://herbsutter.com/gotw/_102/
http://www.tomdalling.com/blog/software-design/resource-acquisition-is-initialisation-raii-explained/

Dirk Hutter – C++ User Group – 2015-06-17 31

CBM

Thanks for your attention

Dirk Hutter
hutter@compeng.uni-frankfurt.de

